Impaired binding of standard initiation factors eIF3b, eIF4G and eIF4B to domain V of the live-attenuated coxsackievirus B3 Sabin3-like IRES - alternatives for 5′UTR-related cardiovirulence mechanisms
نویسندگان
چکیده
UNLABELLED Internal ribosome entry site (IRES) elements fold into highly organized conserved secondary and probably tertiary structures that guide the ribosome to an internal site of the RNA at the IRES 3'end. The composition of the cellular proteome is under the control of multiple processes, one of the most important being translation initiation. In each poliovirus Sabin vaccine strain, a single point mutation in the IRES secondary-structure domain V is a major determinant of neurovirulence and translation attenuation. Here we are extrapolating poliovirus findings to a genomic related virus named coxsackievirus B3 CVB3); a causative agent of viral myocarditis. We have previously reported that Sabin3-like mutation (U473 → C) introduced in the domain V sequence of the CVB3 IRES led to a defective mutant with a serious reduction in translation efficiency and ribosomal initiation complex assembly, besides an impaired RNA-protein binding pattern. With the aim to identify proteins interacting with both CVB3 wild-type and Sabin3-like domain V RNAs and to assess the effect of the Sabin3-like mutation on these potential interactions, we have used a proteomic approach. This procedure allowed the identification of three RNA-binding proteins interacting with the domain V: eIF4G (p220), eIF3b (p116) and eIF4B (p80). Moreover, we report that this single-nucleotide exchange impairs the interaction pattern and the binding affinity of these standard translation initiation factors within the IRES domain V of the mutant strain. Taken together, these data indicate how this decisive Sabin3-like mutation mediates viral translation attenuation; playing a key role in the understanding of the cardiovirulence attenuation within this construct. Hence, these data provide further evidence for the crucial role of RNA structure for the IRES activity, and reinforce the idea of a distribution of function between the different IRES structural domains. VIRTUAL SLIDE The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6160165131045880.
منابع مشابه
Ribosomal Initiation Complex Assembly within the Wild-Strain of Coxsackievirus B3 and Live-Attenuated Sabin3-like IRESes during the Initiation of Translation
Coxsackievirus B3 (CVB3) is an enterovirus of the family of Picornaviridae. The Group B coxsackieviruses include six serotypes (B1 to B6) that cause a variety of human diseases, including myocarditis, meningitis, and diabetes. Among the group B, the B3 strain is mostly studied for its cardiovirulence and its ability to cause acute and persistent infections. Translation initiation of CVB3 RNA ha...
متن کاملMolecular Analysis of RNA-RNA Interactions between 5′ and 3′ Untranslated Regions during the Initiation of Translation of a Cardiovirulent and a Live-Attenuated Coxsackievirus B3 Strains
Coxsackievirus B3 (CVB3) is a causative agent of viral myocarditis, meningitis and pancreatitis. CVB3 overcome their host cells by usurping the translation machinery to benefit viral gene expression. This is accomplished through alternative translation initiation in a cap independent manner at the viral internal ribosomal entry site. The 5' untranslated region (5'UTR) of CVB3 genomic RNA is hig...
متن کاملIRES interaction with translation initiation factors: functional characterization of novel RNA contacts with eIF3, eIF4B, and eIF4GII.
Translation initiation promoted by picornavirus internal ribosome entry site (IRES) elements is dependent on the association of specific IRES sequences to the initiation factor eIF4G. However the RNA determinants interacting with other components of the translational machinery are still unknown. In this study, we have identified novel RNA-protein interactions between the foot-and-mouth disease ...
متن کاملInteraction of translation initiation factor eIF4B with the poliovirus internal ribosome entry site.
Poliovirus translation is initiated at the internal ribosome entry site (IRES). Most likely involving the action of standard initiation factors, this highly structured cis element in the 5" noncoding region of the viral RNA guides the ribosome to an internal silent AUG. The actual start codon for viral protein synthesis further downstream is then reached by ribosomal scanning. In this study we ...
متن کاملA novel protein-RNA binding assay: functional interactions of the foot-and-mouth disease virus internal ribosome entry site with cellular proteins.
Translation initiation on foot-and-mouth disease virus (FMDV) RNA occurs by a cap-independent mechanism directed by a highly structured element (approximately 435 nt) termed an internal ribosome entry site (IRES). A functional assay to identify proteins that bind to the FMDV IRES and are necessary for FMDV IRES-mediated translation initiation has been developed. In vitro-transcribed polyadenyla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013